Annale : Décomposition d'une eau oxygénée

L’usage des calculatrices n’est pas autorisé. L’épreuve a été conçue pour être traitée sans calculatrice.

L’eau oxygénée ou solution aqueuse de peroxyde d’hydrogène $\ce{H2O2}$ est une espèce oxydante utilisée au laboratoire. Il s’agit aussi d’une espèce chimique utilisée dans la vie courante : décoloration des cheveux, désinfection des verres de contact, désinfection des plaies. Sa décomposition, qui produit un dégagement de dioxygène, est accélérée par certains facteurs comme l’exposition à la lumière, l’ion fer (II), l’ion fer (III), le platine…

[Lire]

Annale : Fabrication d'un alcool

La transformation étudiée

Le 2-chloro-2-méthylpropane réagit avec l’eau pour donner naissance à un alcool : le 2-méthylpropan-2-ol. Cette transformation est lente et totale. On peut la modéliser par l’équation : $$ \ce{(CH3)3C–Cl(liq) + 2H2O(liq) –> (CH3)3C–OH(liq) + H3O+(aq) + Cl–(aq)} $$

Données

  • Masse molaire : $M(\ce{(CH3)3C-Cl}) = \pu{92,0 g.mol–1}$.
  • Masse volumique : $\rho = \pu{0,85 g.mL–1}$.
  • La conductivité d’un mélange est donnée par $\sigma = \sum \lambda_i [X_i]$ où $[X_i]$ désigne la concentration des espèces ioniques présentes dans le mélange, exprimée en $\pu{mol.m–3}$.
  • Conductivités molaires ioniques : $\lambda (\ce{H3O+})= \pu{349,8e–4 S.m2.mol–1}$ et $\lambda (\ce{Cl-})= \pu{76,3e–4 S.m2.mol–1}$.

Protocole observé

  • Dans une fiole jaugée, on introduit $\pu{1,0 mL}$ de 2-chloro-2-méthyl-propane et de l’acétone afin d’obtenir un volume de $\pu{25,0 mL}$ d’une solution $S$.
  • Dans un bécher, on place $\pu{200,0 mL}$ d’eau distillée dans laquelle est immergée la sonde d’un conductimètre. Puis, à l’instant $t = \pu{0 min}$, on déclenche un chronomètre en versant $\pu{5,0 mL}$ de la solution $S$ dans le bécher.
  • Un agitateur magnétique permet d’homogénéiser la solution obtenue, on relève la valeur de la conductivité du mélange au cours du temps.
  1. Montrer que la quantité initiale de 2-chloro-2-méthylpropane introduite dans le dernier mélange est $n_0 = \pu{1,8e–3 mol}$.

    [Lire]

Réactions chimiques d’ordre 1

Vitesses de réactions et concentrations molaires

On observe expérimentalement qu’en milieu homogène les vitesses de réactions dépendent :

  • d’une part des concentrations molaires des constituants ;
  • d’autre part de la température. Ce sont les facteurs cinétiques.
On exclut ici toute action catalytique.

Si l’on considère, dans un premier temps, la température constante et uniforme dans le réacteur, la vitesse ne dépend plus que des concentrations molaires. Cette dépendance est a priori quelconque, plus ou moins complexe, et peut faire apparaître les concentrations tant des réactifs que des produits. Cependant, dans de nombreux cas la relation revêt une forme assez simple, du type :

[Lire]

Facteurs Cinétiques

Cinétique chimique

La cinétique chimique est l’étude de la vitesse des réactions chimiques.

Certaines réactions sont très rapides voire instantanées, comme les explosions. D’autres sonttellement lentes qu’elles durent plusieurs années*(comme la formation de la rouille), voireplusieurs siècles(comme la formation du charbon ou du pétrole). Certaines sont mêmetellement lentes que les réactifs de départ sont considérés comme stables, par exemple la transformation du diamant en carbone graphite. On parle alors d’états « métastables ».

[Lire]

Comment modifier la vitesse d'une réaction chimique ?

Réactions chimiques lentes, réactions chimiques rapides

Cinétique chimique

Chaque système chimique évolue à une certaine vitesse. L’étude de l’évolution temporelle des systèmes chimiques constitue la « cinétique chimique ».

Classification

Réaction chimique rapide

Une réaction chimique est dite rapide s’il est difficile, voire impossible, de suivre l’évolution du système chimique qu’elle modélise à l’œil ou avec un instrument de mesure. Elle semble achevée dès que les réactifs entrent en contact.

[Lire]