Particule ⍺ dans un champ électrostatique uniforme

Une particule $\alpha$ (noyau d’hélium : $\ce{^{4}_{2}He}$) arrive au point $O$ dans un condensateur plan avec une vitesse $\vec{v_0}$ de direction parallèle aux armatures $C$ et $D$ du condensateur. Une tension constante $U$ est appliquée entre ces deux armatures longues de $l = \pu{5,00 cm}$ et distantes de $d = \pu{4,00 cm}$. Données On négligera le poids de la particule $\alpha$ devant la force électrostatique. On rappelle que pour un condensateur plan : $E = \dfrac{U}{d}$. [Lire]

Les débuts de l'électron en physique

Le problème posé par la nature des « rayons cathodiques » à la fin du XIXème siècle fut résolu en 1897 par l’Anglais J.J. Thomson : il s’agissait de particules chargées négativement baptisées par la suite « électrons ». La découverte de l’électron valut à Thomson le prix Nobel de physique en 1906. Le défi pour les scientifiques de l’époque fut alors de déterminer les caractéristiques de cette particule : sa charge électrique et sa masse. [Lire]

Tomographie par émission de positons (Difficile !)

La tomographie par émission de positons (TEP) est un examen reposant sur la détection de positons. Ils sont émis par le $\ce{^{18}F-FDG}$, que l’on injecte au patient et qui doit être produit à l’hôpital. Pour cela, on bombarde au moyen d’un cyclotron des noyaux d’oxygène 18 par des protons dont l’énergie cinétique est de $\pu{16 MeV}$. Les protons placés au point $O$ sont accélérés jusqu’au point $O’$ où ils pénètrent dans le dé $D$. [Lire]

Annale : Laboratoires en impesanteur

Au terme apesanteur, utilisé dans le langage courant, on préfère aujourd’hui celui d’impesanteur, en raison de la confusion orale entre « la pesanteur » et « l’apesanteur ». L’étude de l’influence de la pesanteur sur certains phénomènes physiques, chimiques ou biologiques nécessite de disposer de laboratoires en impesanteur. Cette situation d’impesanteur est obtenue à bord d’un « véhicule » tombant en chute libre : l’Airbus « A300 zéro G » en vol parabolique ou la station spatiale internationale (ISS) en orbite autour de la Terre. [Lire]

Exploration du système saturnien

Saturne, à cause de sa distance à la Terre et au Soleil, est une destination spatiale complexe qui nécessite un savoir-faire et des ressources financières très importants. La mission Cassini-Huygens reste, à ce jour, la seule mission à avoir placé une sonde, Cassini, en orbite autour de Saturne, et à avoir pu mener une étude approfondie de son système. Cet exercice se propose d’étudier l’une des particularités de la planète Saturne, ses anneaux, puis se concentre sur l’étude de deux aspects de la mission Cassini-Huygens : l’atterrissage en douceur de l’atterrisseur Huygens sur le sol de la lune la plus grosse de Saturne, Titan et une erreur de conception qui aurait pu faire échouer la partie la plus importante de la mission. [Lire]

Annale : Principe de la spectrométrie de masse

« La spectrométrie de masse est une technique d’analyse permettant notamment d’identifier des molécules organiques et de déterminer leur formule développée. Dans un spectromètre de masse, des ions sont séparés en fonction de leur masse et de leur charge électrique. Le Canadien Arthur Dempster (1886–1950) a contribué à développer cette technique durant la première moitié du XXème siècle et ses travaux l’ont conduit à la découverte de l’isotope 235 de l’uranium (seul l’isotope 238 était connu à l’époque), utilisé comme combustible fissile dans les centrales nucléaires. [Lire]

Mouvements dans le champ gravitationnel non uniforme

Les lois de Kepler Présentation des lois À la suite d’un dépouillement méticuleux des observations faites pendant de nombreuses années par l’astronome danois Ticho Brahe (1546-1601), Kepler (1571-1630) a établi trois lois empiriques décrivant les mouvements des planètes1. Les deux premières lois furent publiées par Kepler en 1609 et la troisième en 1619. Les lois de Kepler conduisirent Newton à la découverte de la loi de la gravitation universelle. (Loi des trajectoires) Chaque planète décrit autour du Soleil une ellipse dont le Soleil occupe un des foyers. [Lire]

Mouvement d'une particule chargée dans un champ électrique uniforme

Champ électrique Force de Coulomb Force de Coulomb Lorsque deux charges électriques immobiles se trouvent aux points $M_1$ et $M_2$ de l’espace, on modélise l’action de la charge $q_1$ sur la charge $q_2$ par une force, la force de Coulomb, dont les caractéristiques sont : $$ \vec{F}_{q_1 / q_2} = \begin{cases} \textbf{Point d’application :} & M_2\cr \textbf{Direction :} & \text{droite } (M_1 M_2)\cr \textbf{Sens :} & \text{dépend des signes des charges}\cr \textbf{Valeur :} & F_{q_1 / q_2} = k\, \dfrac{\lvert q_1 \cdot q_2 \rvert}{d^2} \end{cases}$$ [Lire]

Annale : Saut en parachute

Le jour d’un baptême de saut en parachute, le moniteur indique les consignes à respecter pendant le saut en tandem1 et donne l’équipement nécessaire. Un caméraman est présent tout au long de la journée pour filmer les réactions des participants avant, pendant et après le saut. Arrivé à l’altitude du saut, le pilote met l’avion à l’horizontale, réduit sa vitesse et la fixe à environ $\pu{120 km.h-1}$. Le moniteur ouvre la porte, le tandem s’élance hors de l’avion et le saut débute. [Lire]

Annale : Mécanique du vol d'un ballon sonde

Un ballon sonde, en caoutchouc mince très élastique, est gonflé à l’hélium. Une nacelle attachée au ballon emporte du matériel scientifique afin d’étudier la composition de l’atmosphère. En montant, le ballon grossit car la pression atmosphérique diminue. Sa paroi élastique finit par éclater à une altitude généralement comprise entre 20 et 30 kilomètres. Après éclatement, un petit parachute s’ouvre pour ramener la nacelle et son matériel scientifique au sol. Il faut ensuite localiser la nacelle, puis la récupérer pour exploiter l’ensemble des expériences embarquées. [Lire]