Annale : Chaufferette Chimique



La neige tombe, les mains commencent à s’engourdir et le refuge est encore loin. Le randonneur sort alors de son sac à dos une pochette en plastique, remplie d’un liquide transparent et appuie sur un petit disque métallique placé à l’intérieur : le liquide commence à se solidifier tout en dégageant une douce chaleur.

Ce dispositif nommé chaufferette chimique est constitué d’une enveloppe souple de plastique qui contient une solution aqueuse d’acétate de sodium à 20 % en masse minimum. La solidification s’amorce à partir du disque, localement la solution s’échauffe. L’énergie qu’il a fallu fournir au matériau pour le faire fondre est restituée […]. Après utilisation, on peut régénérer la chaufferette en faisant fondre le solide obtenu par chauffage. On laisse alors le matériau doucement refroidir…

Extrait de l'article «  Idées de physique »
Pour la Science (2008)

Après l’étude d’une solution d’éthanoate de sodium (ou acétate de sodium), on se propose de vérifier par un titrage pH-métrique que la solution contenue dans une chaufferette chimique est une solution saturée en éthanoate de sodium.

Données&nbsp

  • Produit ionique de l’eau : Ke=[HX3OX+][HOX]C02=1,01014K_e = \dfrac{[\ce{H3O^+}] \cdot [\ce{HO^-}]}{C_0^2} = \pu{1,0e-14} à 25 C\pu{25 °C} ;
  • Constante apparaissant dans l’expression du pH et du produit ionique de l’eau : C0=1,0 molL1C_0 = \pu{1,0 mol.L-1} ;
  • Masse molaire de l’éthanoate de sodium : M(CHX3COONa)=82,0 gmol1M(\ce{CH3COONa}) = \pu{82,0 g.mol-1} ;
  • La solubilité notée s d’une espèce chimique exprimée en gL1\pu{g.L-1} est la masse maximale de cette espèce que l’on peut dissoudre dans un litre de solution à une température donnée ;
  • Solubilité de l’éthanoate de sodium dans l’eau à 25 C\pu{25 °C} : s=365 gL1s = \pu{365 g.L-1} soit 4,5 molL1\pu{4,5 mol.L-1}.

Étude d’une solution aqueuse d’éthanoate de sodium

L’éthanoate de sodium CHX3COONa\ce{CH3COONa} est un solide blanc. En solution aqueuse, l’éthanoate de sodium se dissocie CHX3COONa(s)eauCHX3COOX(aq)+NaX+(aq)\ce{CH3COONa(s) ->[eau] CH3COO^-(aq) + Na^+(aq) }

  1. Justifier, en s’appuyant sur la représentation de Lewis de l’ion, que l’ion éthanoate est une base selon Brönsted. En déduire le couple acido-basique correspondant.

Réponse
  • L’ion comporte un atome d’oxygène porteur d’une charge négative et de doublets non liants. Cette zone est donc un site riche en électrons, capable de réagir avec des atomes d’hydrogène déficitaires en électrons car liés à des atomes plus électronégatifs, dans une autre entité. C’est le comportement d’une base selon Brönsted.

  • Couple : CHX3COOH/CHX3COOX\ce{CH3COOH/CH3COO^-}.


  1. Écrire l’équation de la réaction chimique entre l’ion éthanoate CHX3COOX(aq)\ce{CH3COO^-(aq)} et l’eau.

Réponse

CHX3COOX(aq)+HX2OCHX3COOH+HOX\ce{CH3COO^-(aq) + H2O <=> CH3COOH + HO^- }


Lorsqu’on introduit dans un bécher un volume V=100 mLV = \pu{100 mL} d’une solution SS d’éthanoate de sodium dont la quantité de matière en soluté apporté est n=1,0102 moln = \pu{1,0e-2 mol}, le pH mesuré de cette solution SS est égal à 8,9\pu{8,9}.

  1. Construire le tableau d’avancement de cette réaction en utilisant la quantité de matière nn et l’avancement xx de la réaction.

Réponse
État Av. CHX3COOX(aq)\ce{CH3COO^-(aq)} HX2O\ce{H2O} CHX3COOH\ce{CH3COOH} HOX\ce{HO^-}
Initial 0 nn excès 0 0
Interm. xx nxn-x excès xx xx
Final xfx_f nxfn-x_f excès xfx_f xfx_f
Final hypothétique xmaxx_{max} nxmaxn-x_{max} excès xmaxx_{max} xmaxx_{max}

  1. Calculer la concentration [HX3OX+][\ce{H3O^+}] en ions oxonium HX3OX+\ce{H3O^+} à l’équilibre dans la solution.
    En déduire la valeur de la concentration en ions hydroxyde à l’équilibre [HOX][\ce{HO^-}], à la température de 25 C\pu{25 °C}.

Réponse
  • pH=log([HX3OX+]C0)[HX3OX+]=C010pHpH = -\log \left( \dfrac{[\ce{H3O^+}]}{C_0} \right) \Harr \boxed{[\ce{H3O^+}] = C_0 \cdot 10^{- pH}}.

  • A.N. [HX3OX+]=1,0 molL1108,9=1,3109 molL1[\ce{H3O^+}] = \pu{1,0 mol.L-1} \cdot 10^{- 8,9} = \pu{1,3e-9 mol.L-1}.

  • Ke=[HX3OX+][HOX]C02[HOX]=KeC02[HX3OX+]K_e = \dfrac{[\ce{H3O^+}] \cdot [\ce{HO^-}]}{C_0^2} \Harr \boxed{[\ce{HO^-}] = \dfrac{K_e \cdot C_0^2}{ [\ce{H3O^+}] }}.

  • A.N. [HOX]=1,01014×(1,0 molL1)21,3109 molL1=7,9106 molL1[\ce{HO^-}] = \dfrac{\pu{1,0e-14} \times (\pu{1,0 mol.L-1})^2}{ \pu{1,3e-9 mol.L-1} } = \pu{7,9e-6 mol.L-1}


  1. Pour la solution préparée, calculer l’avancement à l’équilibre xeqx_{eq}.

Réponse
  • Le tableau d’avancement nous apprend que [HOX]=xfVxf=[HOX]V[\ce{HO^-}] = \dfrac{x_f}{V} \leftrightarrow \boxed{ x_f = [\ce{HO^-}] \cdot V}.

  • A.N. xf=7,9106 molL1×100103 L=7,9107 molL1 x_f = \pu{7,9e-6 mol.L-1} \times \pu{100e-3 L} = \pu{7,9e-7 mol.L-1}.


  1. La transformation chimique est-elle totale ?

Réponse
  • À partir de la définition de l’avancement maximal xmaxx_{max} et du tableau d’avancement, on peut écrire que nxmax=0xmax=nn - x_{max} = 0 \Leftrightarrow \boxed{ x_{max} = n }.

  • A.N. xmax=1,0102 molx_{max} = \pu{1,0e-2 mol}.

  • xmaxxfx_{max} \ggg x_f, le système n’avance quasiment pas. La quantité de produits fabriqués est très petite.


Titrage de la solution d’éthanoate de sodium contenue dans une chaufferette chimique

Une chaufferette chimique contient une solution aqueuse S0S_0 d’éthanoate de sodium (NaX++CHX3COOX)(\ce{Na^+ + CH3COO^-}). La solution a un volume V0=100 mLV_0 = \pu{100 mL} et une masse m=130 gm = \pu{130 g}. La solution S0S_0 contenue dans la chaufferette chimique étant trop concentrée pour être dosée directement au laboratoire, on prépare une solution S1S_1 en diluant 100 fois le contenu de la chaufferette chimique.

Pour déterminer la concentration molaire C0C_0 en éthanoate de sodium apporté dans une chaufferette chimique, on place dans un bécher un volume V1=25,0 mLV_1 = \pu{25,0 mL} de solution S1S_1 à titrer.

On réalise le titrage avec suivi pH-métrique de la solution S1S_1 par une solution d’acide chlorhydrique (HX3OX++ClX(aq))(\ce{H3O^+ + Cl^-(aq)}) de concentration CA=2,0101 molL1C_A = \pu{2,0e-1 mol.L-1}. On note VAV_A le volume de la solution d’acide chlorhydrique versé.

  1. Écrire l’équation de la réaction chimique support de ce titrage.

Réponse

CHX3COOX(aq)+HX3OX+CHX3COOH(aq)+HX2O \ce{ CH3COO^-(aq) + H3O^+ -> CH3COOH(aq) + H2O }


On obtient les courbes de la figure 5 ci-dessous :

Remarque : Image à télécharger

  1. Schématiser et légender le dispositif de titrage.

Réponse

  1. Donner la définition de l’équivalence d’un titrage.

Réponse

L’équivalence d’un titrage est l’instant du titrage où on change de réactif limitant.


  1. Écrire la relation entre la quantité de matière d’ions éthanoate ni(CHX3COOX)n_i(\ce{CH3COO^-}) présente initialement dans le bécher et la quantité de matière d’ions oxonium nE(HX3OX+)n_E(\ce{H3O^+}), qui permet d’atteindre cette équivalence. On pourra éventuellement s’aider d’un tableau d’avancement.

Réponse

L’utilisation d’un tableau d’avancement permet d’écrire qu’à l’équivalence :

  • ni(CHX3COOX)xE=0n_i(\ce{CH3COO^-}) - x_E = 0
  • nE(HX3OX+)xE=0n_E(\ce{H3O^+}) - x_E = 0

donc xE=ni(CHX3COOX)=nE(HX3OX+)x_E = n_i(\ce{CH3COO^-}) = n_E(\ce{H3O^+}).


  1. Déterminer le volume à l’équivalence VAEV_{AE} en expliquant la méthode utilisée.

Réponse

Pour déterminer la valeur de VAEV_{AE}, on utilise la méthode de la dérivée, sur le graphique donnant l’évolution du pH au cours du temps. Il faut noter que le concepteur du sujet a décidé de tracer dpHdVA \left\lvert \dfrac{\mathrm{d}pH}{\mathrm{dV_A}} \right\rvert . C’est la raison pour laquelle les valeurs de cette fonction sont toutes positives alors que la dérivée est, elle, négative puisque la fonction pH=f(VA)pH = f(V_A) est décroissante. VAE=8,8 mLV_{AE} = \pu{8,8 mL}.


  1. Calculer la concentration C1C_1 en ions éthanoate de la solution dosée.

Réponse
  • xE=ni(CHX3COOX)=nE(HX3OX+)C1V1=CAVAEx_E = n_i(\ce{CH3COO^-}) = n_E(\ce{H3O^+}) \Leftrightarrow \boxed{ C_1V_1 = C_A V_{AE} }.

  • Finalement C1=CAVAEV1\boxed{ C_1 = C_A \dfrac{V_{AE}}{V_1} }.
    A.N. C1=2,0101 molL1×8,8 mL25,0 mL=7,0102 molL1C_1 = \pu{2,0e-1 mol.L-1} \times \dfrac{\pu{8,8 mL}}{\pu{25,0 mL}} = \pu{7,0e-2 mol.L-1}.


  1. Calculer la concentration C0C_0 en éthanoate de sodium apporté dans la solution contenue dans la chaufferette. La solution d’éthanoate de sodium contenue dans la chaufferette est-elle saturée ?

Réponse
  • CO=100C1C_O = 100 C_1, donc C0=100×7,0102 molL1=7,0 molL1C_0 = 100 \times \pu{7,0e-2 mol.L-1} = \pu{7,0 mol.L-1}.
  • L’énoncé annonce que la solubilité de l’éthanoate de sodium est égale à s=4,5 molL1<7,0 molL1s = \pu{4,5 mol.L-1} < \pu{7,0 mol.L-1}. La solution est donc saturée.

  1. Calculer la masse d’éthanoate de sodium dans la chaufferette.

Réponse
  • Concentration massique en éthanoate de soldium : m(CHX3COONa)=C0VM(CHX3COONa)=7,0 molL1×1,00101 L×82,0 gmol1=5,8101 gm(\ce{CH3COONa}) = C_0 \, V\, M(\ce{CH3COONa}) = \pu{7,0 mol.L-1} \times \pu{1,00e-1 L} \times \pu{82,0 g.mol-1} = \pu{5,8e1 g}.

  1. La solution aqueuse de masse 130 g\pu{130 g} contenue dans la chaufferette est-elle au moins à 20 % en masse d’éthanoate de sodium comme l’indique le texte introductif ?

Réponse
  • m(CHX3COONa)m=5,8101 g130 g=0,44\dfrac{ m(\ce{CH3COONa}) }{ m } = \dfrac{ \pu{5,8e1 g} }{ \pu{130 g} } = \pu{0,44} soit 44 %. Ce pourcentage est supérieur à 20 %, l’énoncé est donc correct.


Suggestions de lecture :